2100-CFBH-PP

The very wide toroidal push-pull output transformer 2100-CFBH is meant for mid-high frequency power (100 Watt) tube amplifiers. The power bandwidth starts at 28 Hz up to 330 kHz . Four paralleled power tubes ($6550, \mathrm{KT} 88 / 90$) should be used. Separate cathode feedback windings of 10% and the 33 \% UL-taps create extreme low tube distortions with high speaker damping factor without using any negative feedback. The primary impedance is close to 2 kOhm . The secondary is at the standardized 5 Ohm impedance. This transformer is meant for extreme high quality guitar or mid-high frequency quality sound reproduction. See (*) for a description of this transformer.
(*) Menno van der Veen: High-end Valve Amplifiers 2, New models and applications; Elektor; ISBN: 978-0-905705-90-3; chapter 3
dimensions: $125 \mathrm{~mm} \times 65 \mathrm{~mm}$.
weight: $2,3 \mathrm{Kg}$.
price: $225 €$
technical data:

Type and Application

Primary Impedance	Raa $=1.995$	[k Ω]
Secondary Impedance	$\mathrm{Rls}=5$	[Ω]
Turns Ratio Np/Ns	Ratio $=19.976$	[]
UL-tap:	tap $=33$	[\%]
Cathode Feedback Ratio	$\mathrm{cfb}=10$	[\%]
-. 1 dB Frequency Range [Hz to kHz] (3)	$\mathrm{flf}=1.485$	$\mathrm{fhf}=131.334$
-1 dB Frequency Range [Hz to kHz] (3)	$\mathrm{fl1}=0.633$	fh1 $=204.48$
-3 dB Requency Range [Hz to kHz] (3)	$\mathrm{fl3}=0.322$	fh3 $=290.171$
Nominal Power (1)	$\mathrm{Pn}=100$	[W]
- 3 dB Power Bandwidth starting at	$\mathrm{fu}=28$	[Hz]
Total primary Inductance (2)	Lp $=505$	[H]
Primary Leakage Inductance	lsp $=1.5$	[mH]
Effective Primary Capacitance	cip $=0.4$	[nF]
Total Primary DC Resistance	Rip $=56$	[Ω]
Total Secondary DC Resistance	Ris $=0.1$	[Ω]
Tubes Plate Resistance per section	$\mathrm{ri}=1$	[k Ω]
Insertion Loss	Iloss $=0.204$	[dB]
Q-factor 2nd order HF roll-off (5)	$\mathrm{Q}=0.698$	[]
HF roll-off Specific Frequency (5)	Fo $=293.864$	[kHz]
Quality Factor (5)	$\mathrm{QF}=3.367 \cdot 10^{5}$	[]
Quality Decade Factor $=\log (\mathrm{QF})(5)$:	$\mathrm{QDF}=5.527$	[]
Tuning Factor (5)	TF $=2.674$	[]
Tuning Decade Factor $=\log$ (TF) (5)	TDF $=0.427$	[]
Frequency Decade Factor (4,5)	FDF $=5.954$	[]

(1): calculated under the conditions of balancing the DC-currents and the AC-anode voltages of the powertubes driving the transformer
(2): measured at 230 Vrms at 50 Hz over total primary
(3): \quad calculation at 1 Watt in Rls; ri and Rls are pure Ohmic
(4): defined as FDF $=\log (f \mathrm{fh} 3 / f \mid 3)=$ number of frequency decades transfered
(5): ir. Menno van der Veen; Theory and Practise of Wide Bandwidth Toroidal Output Transformers; preprint 3887, 97th AES Convention San Francisco
(C): Copyright 1994 Vanderveen; Version 1.7; results date 2-2-2012.

Final specs can deviate 15% or improve without notice

Frequency Response; Vertical 1 dB/div, Horizontal . 1 Hz to 1 MHz

Phase Response; Vertical 30 deg./div, Horizontal . 1 Hz to 1 MHz

Differential Phase Distortion; vert. 30 deg./div, hor .1 Hz to 1 MHz
See: W.M.Leach, Differential Time Delay..; JAES sept. 89 pp.709-715

(C): Copyright 1994: Ir. bureau Vanderveen

