Since around 1989, 1 bit delta-sigma modulators have been used in analog to digital converters. This involves sampling the audio at a very high rate (2.8224 MS/s, for example) but only using 1 bit. Because only 1 bit is used, this converter only has 6 dB of dynamic range. The noise floor, however, is spread throughout the entire "legal" frequency range below the Nyquist frequency of 1.4112 MHz. Noise shaping is used to lower the noise present in the audible range (20 Hz to 20 kHz) and increase the noise above the audible range. This results in a broadband dynamic range of only 6 dB, but it is not consistent amongst frequency bands, and in the lowest frequencies (the audible range) the dynamic range is much greater — over 100 dB. Noise Shaping is inherently built into the delta-sigma modulators.
The 1 bit converter is the basis of the DSD format by Sony. An inherent flaw in the 1 bit converter (and thus the DSD system) is that because only 1 bit is used in both the signal and the feedback loop, adequate amounts of dither cannot be used in the feedback loop and distortion can be heard under some conditions. Most A/D converters made since 2000 use multi-bit or multi-level delta sigma modulators that yield more than 1 bit output so that proper dither can be added in the feedback loop. For traditional PCM sampling the signal is then decimated to 44.1 kS/s or other appropriate sample rates.
The 1 bit converter is the basis of the DSD format by Sony. An inherent flaw in the 1 bit converter (and thus the DSD system) is that because only 1 bit is used in both the signal and the feedback loop, adequate amounts of dither cannot be used in the feedback loop and distortion can be heard under some conditions. Most A/D converters made since 2000 use multi-bit or multi-level delta sigma modulators that yield more than 1 bit output so that proper dither can be added in the feedback loop. For traditional PCM sampling the signal is then decimated to 44.1 kS/s or other appropriate sample rates.
